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Abstract—The energy method and symbolic aided analysis provide analytical expressions for the critical
buckling load of tapered columns. The theory developed applies to any column whose cross sectional

variation can be written as a function of the axial
included.

NOTATION

B amplitude of assumed deflected shape

B(z) dimension of base of rectangular column cross
section

E Young’s modulus for homogeneous material

H(z) dimension of height of rectangular column cross
section

H, height dimension at z =0

H, height dimension at z =L

I(z) moment of inertia about the centroid

I, moment of inertia at z =0

I moment of inertia at z = L

k; constant coefficient pertaining to moment of inertia
model

L length of the column before deflection

M(z) bending moment distribution

P applied tip load

P,, critical buckling load

R(z) radius dimension of circular column cross section

R, radius at z =0

R, radius at z =L

U, work done on column by tip load

U, strain energy due to bending

Y(z) assumed deflected shape

A vertical deflection of column

NONUNIFORM COLUMN ANALYSIS AS APPLIED TO
STRINGER DESIGN FOR WING BAYS

Given a two-dimensional moment distribution correspond-
ing to a wing loading (Fig. 1), the need arises to design
stringers/columns for individual wing bays (Fig. 2) that can
resist the variable moment at each cross section (i.e. the
column should not buckle).

A traditional approach is to design the column to resist
the highest bending moment (e.g. M,) and have constant
cross sectional area members for the bay. The weight
penalty for such an approach can be prohibitive since at any
location (other than where the largest moment occurs) the
column is overdesigned. Alternatively, an optimal stringer
design is one where the functional moment of inertia
variation of the member differs from that of the moment
distribution by a constant (i.e. column strength—and con-
sequently the factor of safety—are both constant). A prac-
tical analysis and manufacturing compromise is to design
the column such that the dimensions taper linearly between
ribs.
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coordinate. Examples and percentage errata are

STANDARD METHODS FOR PREDICTING CRITICAL
BUCKLING LOADS WHERE THE CROSS SECTION
OF THE COLUMN VARIES

Predicting the load which will cause the column to buckle
is traditionally done by numerical or finite element tech-
niques. An exact method is to solve the differential equation

&Y(@)

EI(z) e

+M(E)=0, )

>
with appropriate boundary conditions for the ends.
Dinnik [1] shows that when the moment of inertia varies as
a power, eqn (1) can be solved with Bessel functions where

1) =1, G)

()]

M(z)

Wing bay positions

Fig. 1. Moment distribution as a function of wing length
with wing bay positions indicated.
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Fig. 2. Wing bay two corresponding to Fig. 1 moment
distribution.
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Aerospace structures such as T-stringers and /-beams are
columns whose moment of inertia is not simply described by
eqn (2) and require a more general expression associated
with composite shapes of

16)=3 Kz, ®
i=0

where the K;s are constant coefficients dependent on the
columns’ cross section and by what order the dimensions
taper.

CRITICAL BUCKLING LOAD WHEN 7 IS IN THE FORM
OF EQN (3) USING THE ENERGY METHOD

A fixed—free column (Fig. 3) is used to demonstrate
the present method. However, the technique is equally
applicable for other boundary conditions.

Traditional expressions are established for work done by
a compression and the resulting strain energy due to
bending [3, pp. 82-88] where

UE=P1=P1/2IL<d§(Z)>Zdz @
0 >4
_[fWM @)y
. ‘L 2EIG) 9

An assumed deflected shape that accounts for first mode
buckling [3, p. 91] and satisfies the boundary conditions for
a fixed—{ree column is then

= - 6
Y(z) B( cos 2L> | 6)
where y =0at z=0and y=Bat z=1L.
Substituting
sz z
M) = — 1) @ ( ) @

into eqn (5) and using eqn (6) yields

L I(z) cos (;2) dz. ®)

U, and

U _ B%n’
b7 3218

The critical buckling condition occurs when U, =
substituting eqn (3) for I(z) in eqn (8) gives

n’E
P 2L3j Z K;z'cos <2 )dz ©)

Similarly, for a pinned—pinned column

2n’E z
P K,z'sin? dz.
- L J 0 IZO e ( L )

(10)

L e ¥l 2 )

y
Fig. 3. A fixed—free column subjected to a tip load.

Example: Using the energy method, establish the critical
buckling load for a fixed—free square pyramid or a truncated
cone column (Fig. 4) whose moment of inertia varies about
the x axis as n =4 in eqn (3). This is a special case where,
due to symmetry, the form of eqn (3) can be expressed in
the form of eqn (2) and thus allows comparison between
exact and energy method results.

Considering linear tapering dimensions for the square
pyramid and the moment of inertia for a square cross
section (B = H in Fig. 4(a)),

HG) = o, + 2 2 an
z)=H, L L
zH, zH\*
e — ot
i N (1)
AT 12

Equation (12) is then expressed in the form of eqn (3)
(ie. n=4),

1(2) = kyz" + k2" + Kyz22 + kyz® + ky 2%, (13)
where
H4
K0=T21 (14)
HH, H?
s e (15)
3L 3L
HiH} HiH, Hi
K=212 L 16
2T oar L? 2L? (16)
KzHlHS_HfHﬁ HiH, Hj (17)
Y R & L} 3L}
o= H? HHZ " H2H? H3H2 H* a8)
“T12L% T 3LY T 2Lf T 3Lt T 12Lt
Then, combining eqns (9) and (13)—(18),
h T[BE L
Pc,zgff (H*L*+ (4H}H,—4H?) L’z
0
+ (6H?H} — 12H} H, + 6H?}) L*2?
+ (4H,H3} — 12H?H3 + 12H} H,
—4H?}) Lz + (HY— 4H,H3 + 6 H} H}
— 4HH, + HY)z*) cos? (;{) dz. (19)

Substituting numerical constants for the moment of
inertia ratios allows expression of H, in terms of H,, or

H, =(11/Iz)1/4H2- (20)

il 2\
i

(a) = (b) z

Fig. 4. Cross sections of columns for (a) square pyramid
and (b) an axially symmetric truncated cone.
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Then, combining eqn (20) and the solution to (19) (which
is referenced as P, in Appendix A) allows comparison
(Fig. 5) between Dinnik’s results and the energy method
when the critical buckling load is expressed as

_ mEI

w="T7 2n

CONCLUSIONS

The example included is a special case where the form of
eqn (3) can be expressed in the form of eqn (2). However,
this technique is intended when form (2) does not apply as
in the case of composite shapes (Appendix B). Notice the
low percentage error even when only the first term is used
in the series approximation for the deflected shape for the
example.

In the past, the computations necessary to generate the
forms in Appendices A and B would have tended to be
prohibitive owing to their size. Symbolic analysis packages
such as MuMath™ and MACSYMA™ allow for the
generation and storage of such expressions in a more
manageable manner. With the energy method and symbolic
analysis it is only a matter of providing a functional
description of the moment of inertia and the number of
modes in order to generate the critical buckling load.

Notice that by using effective lengths, the range of
applicability of the fixed—free and pinned—pinned cases can
be extended to cover boundary conditions not discussed
here.

Finally, it can be seen that for the sacrifice of expression
size, an analytical solution can supersede the numerical.

Acknowledgement—Dr Nithiam T. Sivaneri is thanked for
his critical comments and guidance.
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APPENDIX A

The critical buckling formulas for the moment of inertia
about the x-axis are given for five geometries whose dimen-
sions taper linearly corresponding to Fig. 4. The odd
number solutions are for the fixed—free case and the even
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Case 1

B =B +ZB,L — ZB,/L

H = constant
P, = EH*4(— B,+ B)) +n¥B, + B,))/(96L?)

P,, = EH(B, + B,)/(24L?.

Case 2
B = constant
H=H +ZH,/L —zH,|L

P, = BE(48(H,(H,(H,—3H,) + 3H}) — H?})
+ 752(12(H2(H2(_H2 +H))— H%) + Hi)
+ n(H(H(H, + H)) + H}) + H1)))/(1927°L?)

P,,=BEQ3(—(H}+ H}) + H,H\(H,+ H)))
+ nX(H(Hy(H, + H,) + H?) + H}))/(48L2).
Case 3
B=H
H=H, +ZH,]L — ZH,/L

P 5= E(120(H(H¥H, —2H,) + 2H}) — H?Y
+ n2Q0(H(HY(— H, + H)) — HY) + HY)
+ n(H(H,(Hy(H, + H)) + H}) + H})
+ HY)))/(240n2 L?) =
P, = E(15(H,(H,(H,(H,— 4H,) + 6H?}) —4H}) + H})
+ 20X (5(—(H} + HY) + HyH\(H} + HY))
+ X (Hy(Hy(Hy(H, + H)) + HY) + H?)
+ HY)/(120m2L2).

Case 4

R =R, + ZR,/L — ZR,/L

Py = E(120(Ry(R}(R, — 2R,) + 2R}) — RY)
+ 1H(20(R,(R3(— R, + R;) — R} + RY)
+ (R (Ry(Ry(R, + R)) + R}) + R?)

number solutions are for the pinned—pinned case. + R1)))/(80nL?)
% 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 |1.0
my --- 11.202{1.505(1.710{1.870|2.002|2.116|2.217(2.308|2.391 Z—z
m, 0.886|1.500|1.684|1.82411.942(2.047]2.142|2.237{2.314]2.392 2—2
Epf:gi"t -- |24.8 |11.9 | 6.7 | 3.8 | 2.2 | 1.2 | 0.6 | 0.2 | 0.1 ;:—

Fig. 5. m, corresponds to Dinnik’s results [3, p. 130] and m, corresponds to the energy method. The
percent error is generated as the taper of the column becomes significant and this is due to the actual
deflected shape no longer being a simple trigonometric shape as assumed.
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Ps = E(I5(Ry(Ry(Ry(R, — 4R,) + 6R}) — 4R}) + RY)
+20°(S(— (RS+ RY) + RyR (RE+ RY)
+ X (Ry(Ry(Ry(Ry + R)) + R} + RY)
+ R1))/(40nL?).

Case 5
B =B+ ZB,/L —ZB,/L
H=H+ZH,L —ZH,/L

Po = EQQAO(H,(Hy(H,(2B,— B)) —3H,B,) + 3H1B,)
+ H}(B, — 2B))) + n*(20(H,(H,(H,(—4B, + B))
+3H,B,) — 3H?B,) + H¥(— B, + 4B)))

+ nX(H(H(H,(4B, + B))
+ H,(3B,+ 2B))) + H{(2B, + 3B)))
+ H(B, + 48,))))/(960n2L?)

P

cl

no = EQGO(B,(H,(H\(H, — 3H,) + 3H}) — H3)
+ By(H\(H\(—H, +3H,) — 3H?) + H}))
+ nX(5(B,(HY—4H, + 3H,) + H3)
+ By(H\(H? + 3H}) — 4H3))
+ nX(B\(H,(H,(4H, + 3H,) + 2H3) + H3})
+ By(H\(H\(H, + 2H,) + 3H3)
+ 4H3))))/(240 n2L?).

APPENDIX B

The critical buckling formula for the moment of inertia
about the x-axis is given for a fixed—free /-beam with
linearly tapering dimensions.

B)=B zBl+sz
2)=B ———+—
' L L
Hz)=H 2H1+zH2
z)=H ——+—
L L
TG) =T, zT,_{_zT2
=Ty~ b=~
'L L
W, W,
Wz)=W,——+—
() 1T L

)

—

| w

Fig. Bl. An /-beam with B, H, T and W tapering linearly
as a function of z, where z = 0 is the built-in end and z = L
is the free end.

B@)T(z)}
12

H(z) SW(z)
+ (—7— —T(z )) ~~3—--~>‘

Combining I(z) and the dimensional descriptions B(z),
H(z), T(z) and W (z) with eqn (9) yields

1(z)=2<

% B(z)T(z)(————H ©=7C ))2

2

P = — (327" — 640n? + 3840ET?}
+ ((24n* + 480m2 — 5760)ET,
+ (—487* + 960n* — 5760EH,
+ (= 127* — 24072 + 2880)EH,)T?
+ (L67*ET? + ((—24n* — 48072
+ 5T60)EH, — 16n*EH )T,
+ (24n* — 480%* + 2880)EH
+ (12n* + 2407% — 2880)EH, H, + 4n*EH )T,
+ (8n* — 160n2 + 1920)ET?
+ ((— 121" + 240n> — 2880)EH, — 8n*EH,)T?
+ ((67* + 120> — 1440)EH? + 8n*EH, H,
+ (6n* — 12072+ 1440)EH?)T,
+ (—4n* 4 80n? — 480)EH}
+(—3n* — 60 + 720) EH, H?
—2n'EHIH, + (—n* 4 20n — 240) EH) W,
+((81* + 160m2 — 1920)ET?}
+ (16n*ET, + (— 121 — 240n2 + 2880)EH,
—8n*EH,)T3 + ((24n* — 480n2 + 5760)ET?
+((—247* £ 480n? — ST60)EH,
— 16n*EH,)T\(62* + 12012 — 1440)EH?
+ 8n*EH, H, + (6n* — 120n? + 1440)EH?)T,
+ (327 4 640n? — 3840)ET?}
+ ((— 127" + 240n% — 2880)EH,

+ (—48n* — 960m? + ST60)EH,)T?

+ (4n*EHS5 + (12n* — 240n?

+ 2880)EH, H, + (24n* + 48012 — 2880)EH?)T,
+(—n*—20n2+ 240)EH3 — 2n*EH, H?
+(=3n%+ 60n2 — T20)EH?H,

+ (—dn* — 80r? + 480)EHHW,

+((—321* + 6402 — 3840)B,

+(—8n*— 160n% + 1920)B,)ET;

+ (((—247° — 48072 + ST60)B, — 16n*B,)ET,
+ ((48n* — 96072 + 5760)B,

+ (127% 4 240n2 — 2880)B, ) EH,

+((121* + 240n2 — 2880)B,

+ 8n*B)EH ) T3+ (((—24n* + 480m?

— 5760)B, — 16n*B,)ET?

4 (((24n* + 4807 — 5760)B, + 167*B,)EH,
+ (167°B, + (24n* — 480n? + S760)B)EH,)T,
+ ((—241* + 4807% — 2880)B,

4 (—6x* — 12072 + 1440)B,)EH

+((—12n* — 2407 + 2880)B,
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— 8n*B)EH H, + ((—6n* + 1207* — 1440)B,
— 4n*B,)EH)T, + ((—8n* + 160n* — 1920).B,
+ (—32n* — 640n% 4 3840)B))ET}

+ ((87*B, + (12n* — 24072 + 2880)B,)EH,

+ ((12n* — 2407* + 2880)B,

+ (487* + 960n> — 5760)B,)EH,)T?

+ (((—6m* — 12072 + 1440)B,

— 47*B)EH? + ((— 12n* + 240m% — 2880) B,
— 87*B,)EH, H, + ((— 6n* + 120n? — 1440)B,
+ (—24n* — 480n? + 2880)B,)EH?

+ T))/(960m2).
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